首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1909篇
  免费   210篇
  国内免费   151篇
  2023年   31篇
  2022年   32篇
  2021年   101篇
  2020年   78篇
  2019年   106篇
  2018年   127篇
  2017年   73篇
  2016年   105篇
  2015年   143篇
  2014年   153篇
  2013年   136篇
  2012年   166篇
  2011年   132篇
  2010年   79篇
  2009年   70篇
  2008年   97篇
  2007年   83篇
  2006年   72篇
  2005年   60篇
  2004年   57篇
  2003年   64篇
  2002年   80篇
  2001年   39篇
  2000年   28篇
  1999年   22篇
  1998年   23篇
  1997年   13篇
  1996年   16篇
  1995年   10篇
  1994年   12篇
  1993年   5篇
  1992年   3篇
  1991年   15篇
  1990年   3篇
  1989年   5篇
  1988年   2篇
  1987年   5篇
  1985年   4篇
  1984年   1篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1970年   1篇
排序方式: 共有2270条查询结果,搜索用时 203 毫秒
21.
22.
m6A modification is the most prevalent RNA modification in eukaryotes. As the critical N6-methyladenosine (m6A) methyltransferase, the roles of methyltransferase like 3 (METTL3) in colorectal cancer (CRC) are controversial. Here, we confirmed that METTL3, a critical m6A methyltransferase, could facilitate CRC progression in vitro and in vivo. Further, we found METTL3 promoted CRC cell proliferation by methylating the m6A site in 3′-untranslated region (UTR) of CCNE1 mRNA to stabilize it. Moreover, we found butyrate, a classical intestinal microbial metabolite, could down-regulate the expression of METTL3 and related cyclin E1 to inhibit CRC development. METTL3 promotes CRC proliferation by stabilizing CCNE1 mRNA in an m6A-dependent manner, representing a promising therapeutic strategy for the treatment of CRC.  相似文献   
23.
24.
In this study, total flavonoids and total triterpenoid acid were extracted with ethyl acetate from Hedyotis diffusa Willd, and hepatoprotective activities of them and five compounds from total flavonoids against H2O2 induced hepatocyte damage on HL‐02 cells were determined. In particular, amentoflavone and total flavonoids had influence on the leakage of ALT, AST, LDH, the activities of SOD and the content of MDA. They effectively reduced the loss of MMP, the release of Cyt C, and then inhibited activation of caspase‐3/caspase‐9 cascade in hepatotoxic cells. The contents of ROS were significantly reduced to inhibit p38 in amentoflavone and flavonoids groups which decreased ASK1 and p‐p38 levels through increasing thioredoxin Trx1 and reductase TrxR1. These results suggesting that the antioxidant protection of amentoflavone and flavonoids might be reducing ROS to inhibit the H2O2‐induced upstream of pathway via increasing levels of Trx1 and TrxR1, which were pivotal in blocking the down streaming effectors of ASK1/p38 MAPK pathway and alleviating hepatotoxicity.  相似文献   
25.
Water splitting requires development of cost‐effective multifunctional materials that can catalyze both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) efficiently. Currently, the OER relies on the noble‐metal catalysts; since with other catalysts, its operation environment is greatly limited in alkaline conditions. Herein, an advanced water oxidation catalyst based on metallic Co9S8 decorated with single‐atomic Mo (0.99 wt%) is synthesized (Mo‐Co9S8@C). It exhibits pronounced water oxidization activity in acid, alkali, and neutral media by showing positive onset potentials of 200, 90, and 290 mV, respectively, which manifests the best Co9S8‐based single‐atom Mo catalyst till now. Moreover, it also demonstrates excellent HER performance over a wide pH range. Consequently, the catalyst even outperforms noble metal Pt/IrO2‐based catalysts for overall water splitting (only requiring 1.68 V in acid, and 1.56 V in alkaline). Impressively, it works under a current density of 10 mA cm?2 with no obvious decay during a 24 h (0.5 m H2SO4) and 72 h (1.0 m KOH) durability experiment. Density functional theory (DFT) simulations reveal that the synergistic effects of atomically dispersed Mo with Co‐containing substrates can efficiently alter the binding energies of adsorbed intermediate species and decrease the overpotentials of the water splitting.  相似文献   
26.
Alloy materials such as Si and Ge are attractive as high‐capacity anodes for rechargeable batteries, but such anodes undergo severe capacity degradation during discharge–charge processes. Compared to the over‐emphasized efforts on the electrode structure design to mitigate the volume changes, understanding and engineering of the solid‐electrolyte interphase (SEI) are significantly lacking. This work demonstrates that modifying the surface of alloy‐based anode materials by building an ultraconformal layer of Sb can significantly enhance their structural and interfacial stability during cycling. Combined experimental and theoretical studies consistently reveal that the ultraconformal Sb layer is dynamically converted to Li3Sb during cycling, which can selectively adsorb and catalytically decompose electrolyte additives to form a robust, thin, and dense LiF‐dominated SEI, and simultaneously restrain the decomposition of electrolyte solvents. Hence, the Sb‐coated porous Ge electrode delivers much higher initial Coulombic efficiency of 85% and higher reversible capacity of 1046 mAh g?1 after 200 cycles at 500 mA g?1, compared to only 72% and 170 mAh g?1 for bare porous Ge. The present finding has indicated that tailoring surface structures of electrode materials is an appealing approach to construct a robust SEI and achieve long‐term cycling stability for alloy‐based anode materials.  相似文献   
27.
Rechargeable aqueous Zn/MnO2 batteries are very attractive large‐scale energy storage technologies, but still suffer from limited cycle life and low capacity. Here the novel adoption of a near‐neutral acetate‐based electrolyte (pH ≈ 6) is presented to promote the two‐electron Mn4+/Mn2+ redox reaction and simultaneously enable a stable Zn anode. The acetate anion triggers a highly reversible MnO2/Mn2+ reaction, which ensures high capacity and avoids the issue of structural collapse of MnO2. Meanwhile, the anode‐friendly electrolyte enables a dendrite‐free Zn anode with outstanding stability and high plating/stripping Coulombic efficiency (99.8%). Hence, a high capacity of 556 mA h g?1, a lifetime of 4000 cycles without decay, and excellent rate capability up to 70 mA cm?2 are demonstated in this new near‐neutral aqueous Zn/MnO2 battery by simply manipulating the salt anion in the electrolyte. The acetate anion not only modifies the surface properties of MnO2 cathode but also creates a highly compatible environment for the Zn anode. This work provides a new opportunity for developing high‐performance Zn/MnO2 and other aqueous batteries based on the salt anion chemistry.  相似文献   
28.
Xia  Siyu  Wu  Ming  Chen  Si  Zhang  Tao  Ye  Lina  Liu  Jun  Li  Hui 《中国病毒学》2020,35(3):311-320
The mechanism of how SARS-CoV-2 causes severe multi-organ failure is largely unknown. Acute kidney injury(AKI) is one of the frequent organ damage in severe COVID-19 patients. Previous studies have shown that human renal tubule cells could be the potential host cells targeted by SARS-CoV-2. Traditional cancer cell lines or immortalized cell lines are genetically and phenotypically different from host cells. Animal models are widely used, but often fail to reflect a physiological and pathogenic status because of species tropisms. There is an unmet need for normal human epithelial cells for disease modeling. In this study, we successfully established long term cultures of normal human kidney proximal tubule epithelial cells(KPTECs) in 2 D and 3 D culture systems using conditional reprogramming(CR) and organoids techniques.These cells had the ability to differentiate and repair DNA damage, and showed no transforming property. Importantly, the CR KPTECs maintained lineage function with expression of specific transporters(SLC34 A3 and cubilin). They also expressed angiotensin-converting enzyme 2(ACE2), a receptor for SARS-CoV and SARS-CoV-2. In contrast, cancer cell line did not express endogenous SLC34 A3, cubilin and ACE2. Very interestingly, ACE2 expression was around twofold higher in 3 D organoids culture compared to that in 2 D CR culture condition. Pseudovirion assays demonstrated that SARS-CoV spike(S) protein was able to enter CR cells with luciferase reporter. This integrated 2 D CR and 3 D organoid cultures provide a physiological ex vivo model to study kidney functions, innate immune response of kidney cells to viruses, and a novel platform for drug discovery and safety evaluation.  相似文献   
29.
Heart failure preceded by pathological cardiac hypertrophy is a leading cause of death. Long noncoding RNA small nucleolar RNA host gene 1 (SNHG1) was reported to inhibit cardiomyocytes apoptosis, but the role and underlying mechanism of SNHG1 in pathological cardiac hypertrophy have not yet been understood. This study was designed to investigate the role and molecular mechanism of SNHG1 in regulating cardiac hypertrophy. We found that SNHG1 was upregulated during cardiac hypertrophy both in vivo (transverse aortic constriction treatment) and in vitro (phenylephrine [PE] treatment). SNHG1 overexpression attenuated the cardiomyocytes hypertrophy induced by PE, while SNHG1 inhibition promoted hypertrophic response of cardiomyocytes. Furthermore, SNHG1 and high‐mobility group AT‐hook 1 (HMGA1) were confirmed to be targets of miR‐15a‐5p. SNHG1 promoted HMGA1 expression by sponging miR‐15a‐5p, eventually attenuating cardiomyocytes hypertrophy. There data revealed a novel protective mechanism of SNHG1 in cardiomyocytes hypertrophy. Thus, targeting of SNHG1‐related pathway may be therapeutically harnessed to treat cardiac hypertrophy.  相似文献   
30.
Exosomes hold great potential to deliver therapeutic reagents for cancer treatment due to its inherent low antigenicity. However, several technical barriers, such as low productivity and ineffective cancer targeting, need to be overcome before wide clinical applications. The present study aims at creating a new biomanufacturing platform of cancer‐targeted exosomes for drug delivery. Specifically, a scalable, robust, high‐yield, cell line based exosome production process is created in a stirred‐tank bioreactor, and an efficient surface tagging technique is developed to generate monoclonal antibody (mAb)‐exosomes. The in vitro characterization using transmission electron microscopy, NanoSight, and western blotting confirm the high quality of exosomes. Flow cytometry and confocal laser scanning microscopy demonstrate that mAb‐exosomes have strong surface binding to cancer cells. Furthermore, to validate the targeted drug delivery efficiency, romidepsin, a histone deacetylase inhibitor, is loaded into mAb‐exosomes. The in vitro anti‐cancer toxicity study shows high cytotoxicity of mAb‐exosome‐romidepsin to cancer cells. Finally, the in vivo study using tumor xenograft animal model validates the cancer targeting specificity, anti‐cancer efficacy, and drug delivery capability of the targeted exosomes. In summary, new techniques enabling targeted exosomes for drug delivery are developed to support large‐scale animal studies and to facilitate the translation from research to clinics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号